9,623 research outputs found

    Using classifiers to predict linear feedback shift registers

    Get PDF
    Proceeding of: IEEE 35th International Carnahan Conference on Security Technology. October 16-19, 2001, LondonPreviously (J.C. Hernandez et al., 2000), some new ideas that justify the use of artificial intelligence techniques in cryptanalysis are presented. The main objective of that paper was to show that the theoretical next bit prediction problem can be transformed into a classification problem, and this classification problem could be solved with the aid of some AI algorithms. In particular, they showed how a well-known classifier called c4.5 could predict the next bit generated by a linear feedback shift register (LFSR, a widely used model of pseudorandom number generator) very efficiently and, most importantly, without any previous knowledge over the model used. The authors look for other classifiers, apart from c4.5, that could be useful in the prediction of LFSRs. We conclude that the selection of c4.5 by Hernandez et al. was adequate, because it shows the best accuracy of all the classifiers tested. However, we have found other classifiers that produce interesting results, and we suggest that these algorithms must be taken into account in the future when trying to predict more complex LFSR-based models. Finally, we show some other properties that make the c4.5 algorithm the best choice for this particular cryptanalytic problem.Publicad

    Quantum Mechanical Studies of Water Splitting Reaction With (ZNO)3 Nanoclusters as Catalysts

    Get PDF
    With the current energy crisis, H2 production through the water-splitting reaction has drawn attention recently. In this thesis, I studied the structural (geometry) and electronic properties (vertical detachment energy and electron affinity) of ZnO monomers and dimers using density functional theory. ZnO is a metal oxide with a 3.37 eV band gap and can be a commercially cheaper photocatalyst in hydrogen (H2) production. The B3LYP/DGDZVP2 pair was selected after investigating different pairs of exchange functionals and basis sets to study the hydration, hydrolysis, and water-splitting reaction. The singlet-triplet energy gaps of small (ZnO)n clusters (n=1-6) of different sizes were compared and the (ZnO)3 cluster was selected as an optimal cluster size to study the water-splitting reaction. A detailed study of water-splitting reaction pathways in the gas phase showed that oxygen is produced after hydrogen and the rate-determining step is the formation of the Zn-H bond. Graphene and graphene oxide (GO) based metal oxides play an important role as substrates for the photocatalytic reaction. The π conjugation structure of GO shows greater electron mobility and may enhance the photocatalytic performance of ZnO by increasing the electron-hole separation. In this work, I studied the impact of graphene and GO on (ZnO)3 in hydration and hydrolysis reaction using 2 water molecules and in producing H2 and O2 as products of water splitting reaction in the gas phase. I used 5 different GO models anchoring carboxyl, hydroxyl, and epoxy functional groups on a graphene layer to study the hydration and hydrolysis reaction with two water molecules. The (ZnO)3 anchored on GO model 1 was used to study the water-splitting reaction pathway

    Synthesis, Characterization, and Biological Studies of a Piperidinyl Appended Dipicolylamine Ligand and Its Rhenium Tricarbonyl Complex as Potential Therapeutic Agents for Human Breast Cancer

    Get PDF
    © 2016 Amali Subasinghe et al. A novel ligand bearing a central piperidinyl sulfonamide group, N(SO2pip)dpa, and its corresponding Re tricarbonyl complex, [Re(CO)3(N(SO2pip)dpa)]+, have been synthesized in good yield. The methylene CH2 signal seen as a singlet (4.54 ppm) in a 1H NMR spectrum of the ligand in DMSO-d6 appears as two doublets (5.39, 5.01 ppm) in a spectrum of the [Re(CO)3(N(SO2pip)dpa)]+ complex and confirms the presence of magnetically nonequivalent protons upon coordination to Re. Structural results revealed that the Re-N bond lengths fall within the normal range establishing coordination of ligand to metal. The presence of intraligand π→π and n→π transitions is indicated by the absorption peaks around 200-250 nm in UV-visible spectra. Absorption peaks in UV-visible spectra around 300 nm for metal complexes were identified as MLCT transitions. The S-N stretch observed as a strong peak at 923 cm-1 for N(SO2pip)dpa appeared at a shorter frequency, at 830 cm-1 in an FTIR spectrum of the [Re(CO)3(N(SO2pip)dpa)]+. The intense fluorescence displayed by the N(SO2pip)dpa ligand has quenched upon coordination to Re. Relatively low IC50 values given by human breast cancer cells, MCF-7, (N(SO2pip)dpa = 139 ÎŒM, [Re(CO)3(N(SO2pip)dpa)]+ = 360 ÎŒM) indicate that N(SO2pip)dpa and [Re(CO)3(N(SO2pip)dpa)]+ are promising novel compounds that can be further investigated on their usage as potential anticancer agents

    Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment

    Get PDF
    In this paper, an accurate dynamic stiffness model for a three-layered sandwich beam of unequal thicknesses is developed and subsequently used to investigate its free vibration characteristics. Each layer of the beam is idealised by the Timoshenko beam theory and the combined system is reduced to a tenth-order system using symbolic computation. An exact dynamic stiffness matrix is then developed by relating amplitudes of harmonically varying loads to those of the responses. The resulting dynamic stiffness matrix is used with particular reference to the Wittrick-Williams algorithm to carry out the free vibration analysis of a few illustrative examples. The accuracy of the theory is confirmed both by published literature and by experiment. The paper closes with some concluding remarks. (c) 2007 Elsevier Ltd. All rights reserved

    Diffusivity and Weak Clustering in a Quasi 2D Granular Gas

    Full text link
    We present results from a detailed simulation of a quasi-2D dissipative granular gas, kept in a non-condensed steady state via vertical shaking over a rough substrate. This gas shows a weak power-law decay in the tails of its Pair Distribution Functions (PDF's), indicating fractality and therefore a tendency to form clusters over several size scales. This clustering depends monotonically on the dissipation coefficient, and disappears when the sphere-sphere collisions are conservative. Clustering is also sensitive to the packing fraction. This gas also displays the standard nonequilibrium characteristics of similar systems, including non-Maxwellian velocity distributions. The diffusion coefficients are calculated over all the conditions of the simulations, and it is found that diluted gases are more diffusive for smaller restitution coefficients.Comment: 14 pages, 11 figure

    Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators

    Get PDF
    Bacteria and archaea encode members of the large multiple antibiotic resistance regulator (MarR) family of transcriptional regulators. Generally, MarR homologs regulate activity of genes involved in antibiotic resistance, stress responses, virulence or catabolism of aromatic compounds. They constitute a diverse group of transcriptional regulators that includes both repressors and activators, and the conventional mode of regulation entails a genetic locus in which the MarR homolog and a gene under its regulation are encoded divergently; binding of the MarR homolog to the intergenic region typically represses transcription of both genes, while binding of a specific ligand to the transcription factor results in attenuated DNA binding and hence activated gene expression. For many homologs, the natural ligand is unknown. Crystal structures reveal a common architecture with a characteristic winged helix domain for DNA binding, and recent structural information of homologs solved both in the absence and presence of their respective ligands, as well as biochemical data, is finally converging to illuminate the mechanisms by which ligand-binding causes attenuated DNA binding. As MarR homologs regulate pathways that are critical to bacterial physiology, including virulence, a molecular understanding of mechanisms by which ligands affect a regulation of gene activity is essential. Specifying the position of ligand-binding pockets further has the potential to aid in identifying the ligands for MarR homologs for which the ligand remains unknown. © The Author (2010)
    • 

    corecore